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Model for Toughness Curves in Two-Phase Ceramics: I,

Basic Fracture Mechanics

Brian R. Lawn,* Nitin P. Padture,*" Linda M. Braun,* and Stephen J. Bennison**

Ceramics Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology,

A fracture mechanics model is presented for the toughening
of ceramics by bridging from second-phase particles,
resulting in toughness curve (T-curve) behavior. It is
assumed that the second-phase particles are in a state of
residual thermal expansion dilatational mismatch relative
to the matrix. In the long-crack region, these stresses aug-
ment frictional sliding stresses at the interphase boundaries,
enhancing the crack resistance; in the short-crack region,
the same stresses drive the crack, diminishing the crack
resistance. The principal manifestation of these countervail-
ing influences is a reduced sensitivity of strength to initial
flaw size, i.e., an increased flaw tolerance. In seeking to
incorporate these key physical elements, our model opts for
mathematical simplicity by assuming uniformly distributed
stresses in two bridging domains: in the first, at small crack-
wall separations, a constant opening stress; in the second, at
larger separations, a constant closing stress. The uniform
crack-plane distributions allow for simple closed-form solu-
tions of the crack K-field equations, and thence an analytical
formulation for the T-curve. Indentation—strength data on a
“reference” Al,0,/ALTiO; ceramic composite are used to
demonstrate the main theoretical predictions and to cali-
brate essential parameters in the T-curve formulation. The
utility of the model as a route to microstructural design is
addressed in Part I1.

I. Introduction

IT 1s now acknowledged that the toughness of monophase
ceramics can exhibit a crack-size dependence, the so-called
toughness curve (T-curve) or resistance curve (R-curve)."” In
nontransforming ceramics the T-curve is attributable princi-
pally to a mechanism of “bridging” by frictional grain slideout,
greatly enhanced in noncubic materials by thermal expansion
anisotropy stresses.® A characteristic of such ceramics is “flaw
tolerance”,*>’-"" i.e., a diminished dependence of strength o
on initial flaw size ¢, relative to traditional “Griffith” behavior
(o « ¢ '"?). Flaw tolerance in monophase ceramics may be
enhanced by scaling up the grain size.'® Beyond a limiting grain
size, however, microcracking occurs spontaneously through the
bulk material, with a consequent degradation of strength. These
characteristics imply an element of compromise in materials
design, e.g., increased strength in the long-crack region at the
potential expense of bulk microcracking and reduced wear
resistance in the short-crack region.'®
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Additions of a second phase can augment the 7-curve behav-
ior, well beyond any “law of mixtures,” by enhancing the effec-
tiveness and density of bridges. This is the underlying
philosophy of reinforced composites. An important element in
the materials design is the control of volume fraction and parti-
cle size, as well as internal residual stress. Increasing the vol-
ume fraction enhances the density of active bridges; increasing
the particle size enhances the scale of these bridges. It follows
that, with a proper understanding of these factors, one may bet-
ter tailor microstructures for specified structural applications.

In the present study we extend the theory of grain bridging
from monophase ceramics to two-phase ceramics, with special
reference to alumina-matrix composites containing aluminum
titanate particulate reinforcement.****' Aluminum titanate is
chosen as a second phase because of its large thermal expansion
mismatch relative to alumina, so as to maximize the intensity of
internal residual stresses at the bridge sites. Our endeavor is to
establish a simple fracture mechanics model for the T-curve in
this class of ceramic. In emphasizing simplicity, we are pre-
pared to sacrifice mathematical rigor in the model, but not at the
expense of physical essentials. Thus, we retain our capacity to
incorporate basic microstructural elements, volume fraction,
particle size, and residual stress, as governing microstructural
variables in the description. Experimental indentation—strength
data on the composite materials will be used to illustrate the
versatility of the model, most notably in the short-crack region.

The study is presented in two parts. In Part I we outline the
basic theory and analyze the principal features of the T-curve
for our composite material. In Part II we investigate the effects
of microstructural variables on the 7-curve and associated flaw
tolerance, with consideration of restrictions imposed by bulk
microcracking limits.

II. Theoretical K-Field Analysis

We begin by deriving K-field relations for cracks in an other-
wise homogeneous ceramic matrix with bridging second-phase
particles. In developing these relations we shall borrow from
earlier theoretical treatments for monophase ceramics'® and
fiber-reinforced composites,” but with the simplification of
continuous and uniformly distributed (Barenblatt—-Dugdale)
bridging stresses over the crack interface. The analysis will be
used to determine 7-curve and strength formalisms for materi-
als with indentation short cracks.

(1) Stress-Separation Function

Consider two surfaces bridged by second-phase particles
over a separation 2u (Fig. 1). We concern ourselves with crack
areas large relative to that occupied by a single particle, so that
a distribution of discrete force-separation functions may be
replaced by a continuous stress—separation function, s(u), say.
We shall regard s(u) as a positive quantity (shielding) when it
acts to close the interface; this convention is consistent with an
enhanced long-crack toughness. At the same time, we recognize
the need to allow for the possibility of negative s(u) (anti-
shielding) at small separations, so as to allow for microcracking
in the short-crack region.
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Fig. 1. Schematic diagram depicting interaction of second-phase par-
ticles with separating matrix walls. (A) Crack opening at small separa-
tions, due to residual outward pressure from compressed particles. (B)
Bridging at large separations, from frictional tractions at sliding grain-
matrix interphase boundaries.
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We therefore assume the bridging particles to exist in a state
of residual compressive stress at the uncracked interface, so that
they initially exert opening stresses on the matrix walls. As the
walls separate, these opening stresses relax. At the same time,
the particles debond from the matrix. At larger separations the
particles begin to slide out of the constraining matrix but are
restrained at those interphase boundary facets where the ther-
mal expansion mismatch stresses are compressive. Resistance
to sliding pullout then arises principally from Coulombic fric-
tional tractions.”” For simplicity, we assume that the transition
to frictional sliding occurs when the precompressed springs
are just relaxed, and neglect any resistance stresses due to
debonding.

The function s(u) at small « is then determined as the open-
ing stress exerted on the matrix over the section area of a single
particle, relative to the interface area occupied by that particle:

s(u) = —V(1 = V) — 2u/d)oy O0O=2u=3%) (la)

where V; is the volume fraction, o is the thermal expansion
mismatch stress at the interphase boundary, and 8 is the separa-
tion at which the residual elastic stresses are relaxed. (The fac-
tor 1 — V;is to allow for a reduction in available matrix volume
at increasing V;, with V; < 0.5.) Similarly, s(u) at large u is
determined as the closing stress exerted on the matrix over the
interphase frictional contact area of the particle, again relative
to the fractional interface area:'®

s(u) = +Vi(1 = V(A = 2u/EmEpog/
@®=2u=sf)  (b)

where [ is the particle diameter, v is a particle-matrix
perimeter/area factor relative to [ at the crack plane,' w is the
coefficient of sliding friction, and £ is the separation at which
the particle disengages (8§ << §, usually). The composite s(u)
function of Eq. (1) is plotted in Fig. 2.

While acknowledging the physical sensibility of the linear
(“tail”) stresses in the s(u) function,®' it is nevertheless mathe-
matically expedient to replace these by uniform stresses over
the pertinent bridging zones, as indicated in Fig. 1. Let us there-
fore define “averaged” values p and g over the two bridging
zones:

s = —g = —xV(l - Voo, O=w=5 Qa

sw) = +p = smpeVi(l — Vo, B=w=E (2b)
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Bridging Stress, s(u)

Wall-Wall Displacement, 2u

Fig. 2. Stress—separation function, s({u ), for system in Fig. 1. Shaded
areas indicate approximations of uniform stress s = +pands = —gq
in the two domains. (Positive sign denotes closure bridging stress.)

with conjugate size-independent strain terms
g = 8/l (Ba)
g = &/l (3b)

(2) K-Field and T-Curve

Now consider the stress—separation function of Eq. (2) in the
context of pennylike short cracks, to simulate the evolution of
flaws (natural or artificially induced) under the action of an
externally applied tensile stress. We assume that in their critical
growth stages to failure the cracks traverse a large number of
particles, so that we may be justified in using the continuous
stress function s(u) to describe the ensuing strength characteris-
tics. (This assumption will be examined when we compute the
cohesion-zone dimensions for our composite material later.)

Accordingly, the stress distribution along the coordinate r of
a penny crack (Fig. 3) is

Fig. 3. Equivalent stress distribution, s(r), for bridged crack.
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s(r) = —q (c=\N=r=yo) (4a) (3) Indentation-Strength
s(r) = p (c—A—-N=r=c—-) (4b) Now let us extend the analysis to Vickers indentation flaws,

with ¢ the crack radius. The bridging zone dimensions X and A
scale with the crack-opening displacements & and § of Fig. 1 via
some crack profile relation (with A << A, usually). In part I,
the need for knowledge of the profile may be avoided, by sim-
plistically treating \ and A as adjustable parameters; this will
not be so in Part I, when we consider the role of microstructural
variables.

The “crack-tip” K-field, K o for an equilibrium crack under
applied stress o, in a bridging material contains a microstruc-
tural component, K, :

K. (c) = Yo + K () = T, &)

with T, the intrinsic toughness of the matrix material (grain
boundary toughness in the case of intergranular fracture). Put-
ting —K, = T, (so that a true shielding term appears as a posi-
tive contribution to the toughness), we may write the “global”
K-field as

Ky(c) = Yo, =T, — K,.(c)
=T, + T.(c) = T(c) (6)

which defines the toughness curve, or T-curve, T(c).

To determine T, (c), we integrate the bridging stresses of Eq.
(4) over the entire crack area, using the conventional Green’s
function expression for pennylike cracks:*

T.(c) = 20:/(*ch)”zfrs(r)dr/(c2 —r)'r @)

where a is a geometrical coefficient to allow for interactions
with specimen and crack-neighbor free surfaces. For indenta-
tion radial cracks, one generally defines a coefficient § = 2a/
7', to allow for half-penny geometry, any ensuing distortions
into elliptical fronts, and perturbations from orthogonal radial
and lateral cracks. Integration within three different regions of
crack size gives the microstructural function

T, (c) = —ggc» (0=c=N\) (8a)
T.(c) = ¥gc{1 — [1 — (1 — Mc)*]"?}
— Ygc””[1 = (1 = Ny
A=c=A+)N) 8b)
T.(c) = bpc([1 — (1 — Alc — Nc)]™
= [1 =1 = Ne)")
— ge[1 = (1 = Me)?]'™
A+\N=¢) (8¢)
The ensuing T(c) function in Eq. (6) may be usefully simpli-
fied in certain regions of ¢ by making some reasonable approxi-
mations. In the limit of a very small tensile zone, A becomes

independent of ¢ (“small-zone,” or “Barenblatt,” approxima-
tion), and Eq. 8(b) results in a T-curve that is linear in ¢'*:

T(c) = Ty = W(p + @)(2M)" + dpc'?
AN<<c=A+N (&)
In the limit of very long cracks, Eq. (8¢) results in
T(c) = To — ¥(p + 9)(2N)"” + Yp(2A)'"
(A +N<<o) (10)

corresponding to the plateau toughness.

so that we may use indentation—strength data to evaluate the
T-curve parameters in Egs. (8—10) objectively for our test mate-
rial (Sect. III).

It is necessary now to include one further term in our formu-
lation, to allow for the residual K-field associated with the irre-
versible contact deformation at indentation load P. The
equilibrium crack-tip K-field relation of Eq. (5) is modified

to'*?
K, (c) = bo,c'? + xP/c” + K, (c) = T, (11)
corresponding to a global K-field
K.(c) = bo,c'? + xP/c*
=T, — K,(¢c) =T, + T,(c) = T(c) (12)

The residual-contact term provides additional stabilization to
the crack. The inert strength for indentation flaws is the config-
uration o, = Oy, ¢ = ¢y at which the transposed function

oa(c) = (INc"®[T(c) — xP/c*?] (13)

from Eq. (12) satisfies the requirement do,(c)/dc = 0O for a
maximum, corresponding to the “tangency condition”

dK,(c)/dc = dT(c)/dc (14)

in a conventional T-curve construction.?

Equation (13) is not readily solved analytically for o, cy
using the general T',(c) relations in Egs. (6) and (8). However,
an exact solution is obtainable in the region A << c¢ =< A + A,
using Eq. (9). If we write 0, = 0, — p, Ty = T, — Y(p +
¢)(2\)', Eq. (11) then reduces to the exact same form as the
standard relation for materials with single-valued toughness,'*?

K,(€) = Woic"™ + xP[c¥ = T (15)

Solving for the instability configuration in Eq. (14), or by direct
inspection of the standard solutions for such homogeneous
materials,?*?’ one obtains

em = {4XP/IT, — b(p + 9)(2N)']}* (16a)
ou = p + 3[T, — ¥(p + @)(2N) 1 /4p(4xP)"” (16b)

We shall assert that, because of the long precursor extensions
from initial size ¢, to final size c,, for indentation cracks, the
specification A << ¢ = A + \ poses no severe restriction to the
validity of Eq. (16). Note that for large P the strength is
enhanced relative to the homogeneous matrix material (p =
0 = g), because of the lower-limiting stress p; at small P the
strength is reduced, because of the diminished effective tough-
ness T (square bracket term). Hence, the formalism embodies
the essential quality of flaw tolerance.

III. Fits to Data for Two-Phase Al,0,/Al,TiO; Composite

(1) Experimental Procedure

We illustrate the above formulation with indentation—
strength data from a fine-grain alumina matrix reinforced by
homogeneously distributed aluminum titanate particles (Al,O,/
Al,TiO;). The fabrication procedure for this composite material
has been described elsewhere.??"%2° Materials were fabricated
with a starting grain size <2 pm, and the particles subsequently
grown by a prescribed aging heat treatment.”’ Densities were
measured using the Archimedes method, >98% in all cases,
and the particle size by a lineal intercept method.*' In Part I we
focus on a reference composition with volume fraction V; =
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0.20 and mean second-phase particle size / = 4.0 pm. The alu-
mina grain size is <7 pm, so that there is negligible contribu-
tion to the 7-curve from the matrix itself.'® A micrograph of the
microstructure is shown in Fig. 4.

Additional batches of the alumina-matrix material were also
fabricated with different values of V; and /, for consideration in
the scond part of this study (see Part II).

Specimens for strength testing were prepared as disks,
20-mm diameter and 2.5-mm thickness, with one surface pol-
ished to better than 1 wm. A Vickers indentation was made at
the center of each polished surface, at prescribed load P, and
covered with a drop of silicone oil. The disks were then broken
in biaxial flexure, indentations on the tensile side, with 4-mm-
diameter flat loading on a 15-mm-diameter three-ball support.
These tests were run in “fast” loading (<10 ms failure time), to
ensure “inert” conditions. Post-mortem examinations were
made of all broken specimens to confirm failure initiation from
the indentation sites.

The indentation-strength, o,(P), results are plotted as the
data points in Fig. 5. Error bars are standard deviation bounds
for 4-6 tests at each indentation load.

(2) Evaluation of T-Curve Parameters from Indentation—
Strength Data

Our approach is to evaluate the short-crack 7-curve for our
alumina-based composite from the o,(P) data in Fig. 5, follow-
ing a procedure developed in an earlier study.* Using coeffi-
cients ¢ = 0.77 and x = 0.076 calibrated on a fine-grain
alumina reference material in that earlier study, we first gener-
ate K, (c) functions (Eq. (12)) for each of the o (P) data points.
The T(c) function is then determined as the “envelope of tan-
gency points” (Egs. (12) and (14)) fitted to the family of K:(c)
functions, inserting a calibrated value of T, = 2.75 MPa-m'?
from the earlier study in Eq. (6) and adjusting the microstruc-
tural parameters in Eq. (8).

We do this in Fig. 6, as toughness T against crack-size quan-
tity ¢ In this plot the K}(c) functions are shown as the
inverted solid curves. The heavy curve is a fit of the T(c) func-
tion in Egs. (6) and (8). To obtain this fit, we first used a least-
squares procedure to evaluate the following parameters for the
“reference state” at V; = 0.20,/ = 4.0 pm:

p = 325 MPa (17a)
(r + 992N = 3.51 MPa-m'”? (17b)
A = 180 pm (17¢)

Fig. 4. Scanning electron micrograph showing AL TiO; particles
(V; = 0.20, white phase) in Al,O, matrix (dark phase), for reference
composite.
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Fig. 5. Indentation—strength plot for reference Al,0,/Al,TiO; com-
posite (V; = 0.20, / = 4.0 wm). Data points are means and standard
deviations of 4—6 tests per load. Solid curve is generated theoretically
from the condition do,(c)/dc = 0 in Eq. (13) (using microstructural
parameters evaluated from the T-curve fit in Fig. 6). Dashed curve is
“plateau” approximation from Eq. (16b). Shaded line of slope —1/3
represents indentation—strength results for base fine-grain matrix
alumina.

Recall from Eq. (9) that these parameters completely determine
an approximate “linear” T—c'” representation of T(c), with
slope p and T-axis intercept T, — ¥(p + ¢)(2\)'7?; this repre-
sentation is included as the inclined dashed curve in Fig. 6.
Observe the continuous rollover in the complete T(c) function
to saturation at ¢ >> A + \, as the fully developed bridging
zone begins to translate with the crack.

Since the strength data in Fig. 6 do not extend down into the
region ¢ < \, we need additional information to determine the
full set of microstructural parameters in the 7-curve function.
Precise values of the remaining parameters are not crucial to
our treatment at this juncture, so we take

A = 7.0 pm (18a)

g = 613 MPa (18b)

to match estimates of the short-crack size (¢ =~ 2\) at first
microcracking in Al,0,/Al,TiOs composites with scaled-up
microstructures (see Part II). Observe also the minimum at

Toughness, T (MPa.m'/2)

0 10 20 30 40
Crack Size, ¢'? (um'/?)

Fig. 6. T-curve constructions for reference Al,0,/Al,TiO5 composite.
Family of inverted curves represents K, (c) functions in Eq. (12) evalu-
ated for (o, P) data points in Fig. 5. Shaded curve is fitted envelope
T(c) function from Egs. (6) and (8).
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small ¢, signifying a degradation in toughness at ¢ < 2\ from
the initial crack-opening action of second-phase particles.

With the estimates m) = 4 (rectangular or circular cross-sec-
tion particle) and €, =~ 0.050 (Sect. III(1)), we may use Eq. (2)
to evaluate the composite material quantities

op = 7.7 GPa (19a)
po~27 (19b)

Given the microstructural T-curve parameters in Eqs. (17)
and (18), complete theoretical indentation—strength, o (P),
curves may now be regenerated by seeking extremum solutions
of Eq. (13). Figure 5 includes curves thus regenerated, using the
full T(c) function in Egs. (6) and (8) (solid curve) and the “lin-
ear” T—c'”? approximation in Eq. (9) (dashed curve). The inter-
section of the solid curve through the data reinforces the
validity of our fitting procedure in Fig. 6.

IV. Discussion

The above analysis allows us to analyze the T-curve response
of two-phase ceramics in the short-crack region using indenta-
tion—strength data. A major feature of the analysis is its relative
simplicity. Thus, although discrete microstructural parameters
are used in defining the underlying bridging stress—separation
function, Egs. (1) and (2), we are nevertheless able to regard the
same bridging stresses as continuously distributed along the
crack plane, Eq. (4). The assumption of uniform stresses within
the bridging zones (Figs. 1 and 2) allows for analytical solutions
of the K-field integral equations. The exercise is thereby
reduced to something akin to a Barenblatt—Dugdale crack prob-
lem. Moreover, by calibrating X\ and A in Eqgs. (8-10) directly
from experimental data, our solutions can be determined with-
out at this stage specifying any crack-opening displacement
relation (see, however, Part II). In this context we may note
that the estimated dimension A = 7.0 wm (Sec. III(2)) is com-
parable to the AL, TiO; interparticle separation in Fig. 4, so the
continuum approximation is open to some question in the
crack-size domain to the left of the T(c) minimum in Fig. 6.

One of the advantages of the present model is the clear way it
identifies essential T-curve and associated flaw tolerance char-
acteristics with specific elements of the microstructure. Thus
we note in Eq. (9) that the slope of the T-curve is proportional to
the bridging stress p. From Eq. (2b), this stress increases mono-
tonically with volume fraction V; and residual stress 0. We also
note in Eq. (9) that the scale of the T-curve is limited by the
bridging zone length A. This dimension increases with particle
size [ (Part II). Hence we might expect to be able to enhance the
relatively modest T-curve and flaw tolerance characteristics for
our material in Figs. 5 and 6 by appropriately altering the
microstructure. As we shall see in Part II, such potential
enhancements are ultimately limited by the onset of general
microcracking.

Our simple model is not without its limitations. Replacing
the tail-dominated stress—separation functions in Fig. 1 by the
uniform stresses p and ¢ has inevitable consequences in the pre-
dicted shape of the T-curve. Nevertheless, our description con-
tains the essence of microstructural scaling and internal stress
influences, and will not affect the general physical conclusions
drawn in either Parts I or II of this study.

Useful estimates of the controlling microstructural parame-
ters emerge from the data fits in Figs. 5 and 6. The residual
stress oy =~ 7.7 GPa (Eq. (194a)) is large but is of the order of
computed thermal expansion anisotropy stresses for the Al,O,/
ALTiO, system.? The friction coefficient . =~ 2.7 (Eq. (19b)) is
also high but is nevertheless of the same order as that obtained
in an earlier bridging analysis for pure alumina' and is not
unreasonable for sliding contacts at pristine (freshly debonded)
surfaces.”

There are interesting implications in the analysis concerning
the stability of flaws that evolve through the residual bridging
K-field in their initial state (cf. flaws with no residual K-field
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XxP/c** in Eq. (11)), in response to an applied stress o,. The
appropriate K ,(c) function is a straight line through the origin
of a T-c'* plot, with slope {o,. For the particular Al,O,/
Al,TiOs composite in Fig. 6, the intercept of the extrapolated
“linear” T(c) function on the T-axis, T, — W(p + ¢)(2\)"* in
Eq. (9), is positive. Hence in Fig. 6 the K,(¢) line must always
intersect the T(c) curve with a slope dK,/d(c"?) > dT/d(c"?).
Under these conditions there is no 7-curve “tangency” condi-
tion. This means that, whereas indentation flaws in our material
show substantial precursor crack extension in a strength test, by
virtue of the additional stabilizing influence of the residual con-
tact K-field, natural flaws should propagate spontaneously to
failure at their initial size, ¢ = ¢, (“Griffith failure”). Our
T-curve material in Fig. 6 does nevertheless exhibit a degree of
flaw tolerance: the sensitivity of the strength o for unindented
specimens to ¢, is manifestly reduced relative to a matrix base
material at T = T,.>*7 Note that contrary to common practice
T(c) cannot, even in its oversimplified form of Eq. (9), be repre-
sented as a pure power law; the intercept term in the 7-curve
function is vital in determining the nature of the flaw response.
This last point will be made even more compellingly when
we examine the effect of microstructural variations in Part II.
The real power of the present model is that, once the controlling
microstructural parameters for a given material system have
been calibrated, in the manner of Sect. III(2), one may use the
fracture mechanics to predict how the flaw tolerance character-
istics vary with the microstructure. We will find that the T-axis
intercept referred to above is depressed as volume fraction and
particle size are increased, ultimately becoming negative and
thereby altering the entire complexion of the flaw stability.
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